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1. Introduction 
 
Let G = (V,E) be a graph without loops and multiple 

edges. Let n and m be the number of vertices and edges of 
G, respectively. Such a graph will be referred to as an (n, 
m)-graph. A perfect matching of G is a set of independent 
edges of G covering all vertices of G. 

A dendrimer is a synthetic 3-dimensional 
macromolecule that is prepared in a step-wise fashion 
from simple branched monomer units. For some time, 
dendrimers have received much hype as controllable 
tunable nanoscale materials, yet a question mark still 
remains. The nanostar dendrimer is part of a new group of 
macromolecules with great applications but first its 
mathematical properties must be understood. Here, a 
nanostar dendrimer is a connected plane graph, in which 
each interior face is a regular hexagon and there are no 
common vertices or edges between hexagons [1-3]. 

By IUPAC terminology, a representation of an 
aromatic molecular entity with fixed alternating single and 
double bonds, in which interactions between multiple 
bonds are assumed to be absent, called a Kekule structure. 
The number of Kekule structures of a graph G is denoted 
by K(G) [4]. In mathematics, a Kekule structure for a 
graph G usually named a perfect matching of G [5]. In 
graph theory language, a perfect matching of a graph H is 
a set of pairwise disjoint edges that cover all vertices of H. 
A bipartite graph is a graph whose vertex set V can be 
partitioned into two disjoint subsets V1 and V2 such that 
any edge e=uv ∈ E(G) joins V1 with V2. It is well-known 
that a graph is bipartite if and only if all of its cycles have 
even length.  

If H and G are graphs in which V(H) ⊆ V(G) and 
E(H) ⊆ E(G) then we call H to be a subgraph of G. H is 
called a spanning subgraph of G, if V(H) = V(G). If H is a 
spanning subgroup of G then we write H ≤ss G. A spanning 
subgraph of H is called a Clar cover if each of its 
components is either a hexagon or K2. A Clar cover of H is 
called a Clar structure if the set of hexagons is maximal (in 
the sense of set-inclusion) within all Clar covers of H. The 
number of Clar structures and Clar covers without 

alternating hexagons are denoted by cs(G) and cc(G), 
respectively. In this paper we are interested in dendrimer 
nanostar graphs that possess perfect matchings. The Clar 
polynomial of a of a hexagonal system H can be defines as 
ρ(x,H) = Σi≥0ρ(i,H)xi, where ρ(i,H) is the number of Clar 
structures containing i cycles. If G is a dendrimer nanostar 
then we apply the same definition as hexagonal systems to 
define the Clar polynomial of G. An alternating hexagon 
for a Clar cover C is a hexagon such that its edges are 
alternatively contained in C and G – C. We encourage the 
reader papers [6-12] and references therein for background 
materials as well as basic computational techniques. 

In this paper we only consider connected graphs. Our 
notation is standard and mainly taken from [13,14]. 

 
 
2. Results and discussion  

 
The aim of this section is to compute the sextet 

rotation, Clar structures, Clar covers and Kekule index of 
four dendrimer nanostars NS1[n], NS2[n], NS3[n] and 
NS4[n], Figs. 1-4, where n is the number of layers of the 
nanostar dendrimer graph under consideration. We notice 
that if cs(G) = cc(G) then it is possible to compute easily 
the Clar polynomial of G.  

For convenience, any nanostar dendrimer G 
considered, is assumed to be placed in the plane so that 
one of its edge directions is vertical, Fig. 5. Following 
Zhou, Zhang and Gutman [12], the peaks and valleys of G 
are coloured black and white, respectively, and all cycles 
considered are assumed to be oriented clockwise. Suppose 
M is a perfect matching for G. A cycle C of G is called M-
alternating if its edges belong alternately in M and G - M. 
An M-alternating cycle C of H is said to be proper if each 
edge of C belonging to M goes from a white vertex to a 
black vertex, and improper otherwise. The sextet rotation, 
transforming all proper sextets of a Kekulé structure into 
improper sextets, results in a directed tree with one root, 
which is denoted by R(G).  
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Fig. 1. The molecular graph of NS1[2]. 
 

 
 

Fig. 2. The molecular graph of NS2[1]. 
 

 
 

Fig. 3. The molecular graph of NS3[1]. 

 
 

Fig. 4. The core of NS4[n]. 
 

 
 

Fig. 5. The Core of NS1[n]. 
 
The root perfect matching of G is the unique perfect 

matching without proper sextets. Consider a non-root 
perfect matching Mi. By a sextet rotation, one can obtain 
another perfect matching Mj from Mi. This process is 
denoted by equation R(Mi) = Mj. We now correspond a 
directed tree R(G) to G. The vertices of R(G) are the 
perfect matching of G and two vertices Mi and Mj are 
adjacent if and only if R(Mi) = Mj.  

Example. Consider the core of NS1[n]. In Fig. 6, all 
of perfect matchings of this graph are depicted. In Fig. 7, 
the sextet rotation tree of this graph is drawn.  

In what follows, the number of Kekule structures of a 
graph G is denoted by K(G). Our discussion shows that the 
following theorem is correct: 

Theorem 1. The sextet rotation tree Ti of the 
dendrimer nanostar NSi[n], 1 ≤ i ≤ 4, is a rooted directed 
tree with only one vertex of out-degree 0 and the number 
of leaves of Ti is K(NSi[n]) – 1.  

Gao and Zhang [14], proved that a perfect matching 
M of a hexagonal system H corresponds to a non-leaf of 
R(H) if and only if each proper M-alternating hexagon (if 
such exists) intersects some improper M-alternating 
hexagon. By our generalization of these concepts to 
nanostar dendrimer, one can prove the following result: 
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Corollary. Let G denote one of the nanostar 
dendrimers of Figs. 1-4 and M be a perfect matching of G 
with only M-alternating hexagons. Then every perfect 

matching of G, other than M, is corresponded to leaf of 
R(G). 

 

 
Fig. 6. The perfect matching of the core of NS1[n]. 

 
It is clear that a perfect matching for a graph G is a 

Clar cover of G. If we add the edges of each hexagon to 
initial perfect matching, then we find a Clar cover 
containing hexagons. This shows that our nanostar 
dendrimers has exactly one Clar structure. For a graph G, 
the number of Clar covers of G is denoted by C0(G). 

 

 

Fig. 7. The sextet rotation tree of the core of NS1[n]. 
 
 

Theorem 1. The following statements are hold: 

a) C0(NS1[n]) = 22.6 n
3 − , 

b) C0(NS2[n]) = 22 2n
3 −+

, 

c) C0(NS3[n]) = 182.5 2n
3 −+

, 

d) C0(NS4[n]) = )12(3 2n
3 ++

. 
 
Proof. The proof is straightforward and follows from 

our last discussion and the molecular graph of NSi[n], 1 ≤ i 
≤ 4.                                                                                 

Consider a given Clar cover T of a nanostar dendrimer 
G. If there is a hexagon h outside T we add h to T to obtain 
another Clar cover strictly containing T. This process can 
be continued to obtain the unique Clar structure of G. This 
shows that in a nanostar dendrimer G, cc(G) = cs(G) = 1. 
The following simple lemma is crucial in our next results. 
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Lemma 1. Suppose h(G) denotes the number of 
hexagons in a nanostar dendrimer G. Then the following 
are hold: 

 
a) h(NS1[n]) = 3.2n+1 – 2, 
b) h(NS2[n]) = 2n+2 – 2, 
c) h(NS3[n]) = 10.2n+1 – 18, 
d) h(NS4[n]) = 6.2n+1 + 3. 

 
Proof. The proof is straightforward and follows from 

the molecular graph of NSi[n], 1 ≤ i ≤ 4.                                                                                                                                
We now compute the Clar polynomial of four types of 

nanostar dendrimers introduced in this paper. Since the 
Clar structure of a nanostar dendrimer is unique, the Clar 
polynomial is a monomial. 

Theorem 2. The following statements are hold: 

a) ρ(NS1[n]) = 22.6 n
x − , 

b) ρ(NS2[n]) = 22 2n
x −+

, 

c) ρ(NS3[n]) = 182.5 2n
x −+

, 

d) ρ(NS4[n]) = )12(3 2n
x ++

. 
 
Proof. The proof is straightforward and follows from 

our last discussion and the molecular graph of NSi[n], 1 ≤ i 
≤ 4.                                                                                 

Let G be a non-acyclic graph. The number of 
components and perfect matchings of G are denoted by 
c(G) and m(G), respectively. The perfect matching index 
of G is defined as π(G) = 

)(
)(log2

Gz
Gm , where z(G) = |E(G)| - 

|V(G)| + c(G) is called the cyclic number of G. In the case 
of molecular graph, π(G) is called the Kekule index of G 
and is denoted by κ(G). 

Lemma 2. The number of Kekule structures of our 
nanostar dendrimers are as follows: 

 
a) K(NS1[n]) = 128 +n , 

b) K(NS2[n]) = 22 2

2 −+n

, 
c) K(NS3[n]) = 12.102.

262144
1 +n , 

d) K(NS4[n]) = )1(6282 +n . 
 

In the following table, the number of edges and 
vertices of our nanostar dendrimers are computed. 
 

Table 1. The number of vertices and edges of NS1[n], 
NS2[n], NS3[n] and NS1[n]. 

 
|V(NS1[n])| = 122.18 1 −+n  |E(NS1[n])| = 152.21 1 −+n  
|V(NS2[n])| = 242 6 −+n  |E(NS2[n])| = 212.9 2 −+n  
|V(NS3[n])| = 1082.15 3 −+n  |E(NS3[n])| = 1272.35 2 −+n  
|V(NS4[n])| = 262.3 5 ++n  |E(NS4[n])| = 282.27 2 ++n  

 
We are now ready to prove one of our main results 

related to the Kekule index of these nanostars. We have: 

Theorem 2. The Kekule indices of NS1[n], NS2[n], 
NS3[n] and NS4[n] are computed as follows:  

 
a) κ(NS1[n]) = )22.3()log2)(1( 17

2 −++ +nn , 
b) κ(NS2[n]) = )2.72()12( 11 ++ −− nn , 
c) κ(NS3[0n]) = )192.10()log2.10( 1262144

2
1 −− ++ nn , 

d) κ(NS4[n]) = )22.6(log).1(62 182
2 ++ +nn . 

 
Proof. The proof follows from definition of Kekulé 

index, Lemmas 1,2, Theorems 1,2 and Table 1.                                       
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